Sunday, August 31, 2008

Monster Galaxy

The active galaxy NGC 1275 is also a well-known radio source (Perseus A) and a strong emitter of X-rays due to the presence of a black hole in the center of the galaxy. The behemoth also lies at the center of the cluster of galaxies known as the Perseus Cluster. By combining multi-wavelength images into a single composite, the dynamics of the galaxy are more easily visible. Detail and structure from x-ray, optical and radio wavelengths combine for an aesthetically pleasing, but nonetheless violent depiction of events going on at the heart of the galaxy.

Chandra data from the Advanced CCD Imaging Spectrometer (ACIS) covers X-ray energies from 0.3-7keV. Hubble data from the Advanced Camera for Surveys covers optical wavelengths in the red, green and blue. Radio data from NRAO's Very Large Array at 328 MHz was also used. In the composite image, the X-ray data contribute to the soft violet shells around the outside of the center. The pinkish lobes toward the center of the galaxy are from radio frequencies.

The radio emission, tracing jets from the black hole, fills the X-ray cavities. Dust lanes, star-forming regions, hydrogen filaments, foreground stars, and background galaxies are contributions from the Hubble optical data.

Credit X-ray: NASA/CXC/IoA/A.Fabian et al.; Radio: NRAO/VLA/G. Taylor; Optical: NASA/ESA/Hubble Heritage (STScI/AURA) & Univ. of Cambridge/IoA/A. Fabian

Constellation Perseus. Also Known As NGC 1275. Distance Estimate About 250 million light years. Scale Image is 3.87 arcmin across. Category Groups & Clusters of Galaxies. Coordinates (J2000) RA 03h 19m 47.60s Dec +41° 30' 37.00


Sunday, August 17, 2008

Faster than Light

Traveling Faster Than the Speed of Light

The method is based on the Alcubierre drive, which proposes expanding the fabric of space behind a ship and shrinking space-time in front of the ship. The ship would not actually move, rather the ship would sit in a bubble between the expanding and shrinking space-time dimensions

Two Baylor University scientists have come up with a new method to cause a spaceship to effectively travel faster than the speed of light, without breaking the laws of physics.

Dr. Gerald Cleaver, associate professor of physics at Baylor theorizes that by manipulating the extra spatial dimensions of string theory around a spaceship with an extremely large amount of energy, it would create a "bubble" that could cause the ship to travel faster than the speed of light.

To create this bubble, the Baylor physicists believe manipulating the 10th spatial dimension would alter the dark energy in three large spatial dimensions: height, width and length.

Cleaver said positive dark energy is currently responsible for speeding up the expansion rate of our universe as time moves on, just like it did after the Big Bang, when the universe expanded much faster than the speed of light for a very brief time.

"Think of it like a surfer riding a wave," said Cleaver, who co-authored the paper with Obousy about the new method. "The ship would be pushed by the spatial bubble and the bubble would be traveling faster than the speed of light."

The method is based on the Alcubierre drive, which proposes expanding the fabric of space behind a ship and shrinking space-time in front of the ship. The ship would not actually move, rather the ship would sit in a bubble between the expanding and shrinking space-time dimensions.

Since space would move around the ship, the theory does not violate Einstein's Theory of Relativity, which states that it would take an infinite amount of energy to accelerate a massive object to the speed of light.

String theory suggests the universe is made up of multiple dimensions. Height, width and length are three dimensions, and time is the fourth dimension. String theorists use to believe that there were a total of 10 dimensions, with six other dimensions that we can not yet identify because of their incredibly small size.

A new theory, called M-theory, takes string theory one step farther and states that the "strings" that all things are made of actually vibrate in an additional spatial dimensional, which is called the 10th dimension.

It is by changing the size of this 10th spatial dimension that Baylor researchers believe could alter the strength of the dark energy in such a manner to propel a ship faster than the speed of light.

The Baylor physicists estimate that the amount of energy needed to influence the extra dimension is equivalent to the entire mass of Jupiter being converted into pure energy for a ship measuring roughly 10 meters by 10 meters by 10 meters.

"That is an enormous amount of energy," Cleaver said. "We are still a very long ways off before we could create something to harness that type of energy."

Sunday, August 10, 2008

Bridge of Sighs

Photo credit: Neorelix

...supposedly the sound of despair as students traipse out of exams and over this bridge.

The Bridge of Sighs was supposedly Queen Victoria's favourite place in the city - but only because she hadn't been to the Live and Let Live (which btw is having a 5 yr anniversary do this Saturday) or The Free Press obviously.

Inspired by the 231 years-older one in Venice (Really??) it's found between 3rd and New Courts of St John's College (1511). Wacky students occasionally suspend cars beneath it...

Wednesday, August 06, 2008

Order from Chaos

As you can see I've been trying to restore some order in the Universe.

Building a wall around the villa, and in the process getting a bit of a tan between dips in the pool. The villa by the way is in the plot behind the wall (unseen to the right). I'm standing outside the wall on the drive onto the main road.


Tuesday, August 05, 2008

And here is the pool

Sunday, August 03, 2008

Nearby Galaxy Metropolis

This image is a composite of visible (or optical), radio, and X-ray data of the giant elliptical galaxy, M87.

M87 lies at a distance of 60 million light years and is the largest galaxy in the Virgo cluster of galaxies. Bright jets moving at close to the speed of light are seen at all wavelengths coming from the massive black hole at the center of the galaxy.

It has also been identified with the strong radio source, Virgo A, and is a powerful source of X-rays as it resides near the center of a hot, X-ray emitting cloud that extends over much of the Virgo cluster. The extended radio emission consists of plumes of fast-moving gas from the jets rising into the X-ray emitting cluster medium.

In X-rays, M87 also reveals evidence for a series of outbursts from the central supermassive black hole. The loops and bubbles in the hot, X-ray emitting gas are relics of small outbursts from close to the black hole.

Other interesting features in M87 are narrow filaments of X-ray emission, which may be due to hot gas trapped by magnetic fields. One of these filaments is over 100,000 light years long, and extends below and to the right of the center of M87 in almost a straight line.

The optical data of M87 were obtained with Hubble's Advanced Camera for Surveys in visible and infrared filters (data courtesy of P. Cote, Herzberg Institute of Astrophysics, and E. Baltz, Stanford University). Wide-field optical data of the center of the Virgo Cluster were also provided by R. Gendler (Copyright Robert Gendler 2006).

The X-ray data were acquired from the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer (ACIS), and were provided by W. Forman (Harvard-Smithsonian Center for Astrophysics) et al. The radio data were obtained by W. Cotton and also archive processing using the National Radio Astronomy Observatory's Very Large Array (NRAO/VLA) near Socorro, New Mexico.

Friday, August 01, 2008

A Stellar Jewel Box

Open Cluster NGC 290: A Stellar Jewel Box - Click to Enlarge
Credit: ESA & NASA; Acknowledgement: E. Olszewski (U. Arizona)

Jewels don't shine this bright -- only stars do. Like gems in a jewel box, though, the stars of open cluster NGC 290 glitter in a beautiful display of brightness and colour.

The photogenic cluster, pictured above, was captured recently by the orbiting Hubble Space Telescope. Open clusters of stars are younger, contain few stars, and contain a much higher fraction of blue stars than do globular clusters of stars.

NGC 290 lies about 200,000 light-years distant in a neighboring galaxy called the Small Cloud of Magellan (SMC). The open cluster contains hundreds of stars and spans about 65 light years across. NGC 290 and other open clusters are good laboratories for studying how stars of different masses evolve, since all the open cluster's stars were born at about the same time.