Thursday, April 12, 2007

Space Tsunami

The image to the left is the typical appearance of the aurora before a magnetic substorm. During a substorm, the single auroral ribbon may split into several ribbons (centre) or even break into clusters that race north and south (right). Credits: Jan Curtis

Cluster provides new insights into the working of a ‘space tsunami’ that plays a role in disrupting the calm and beautiful aurora, or northern lights, creating patterns of auroral dances in the sky.

Generally seen in high-latitude regions such as Scandinavia or Canada, aurorae are colourful curtains of light that appear in the sky. Caused by the interaction of high-energy particles brought by the solar wind with Earth’s magnetic field, they appear in many different shapes.

Early in the evening, the aurora often forms a motionless green arc that stretches across the sky in the east-west direction. Colourful dancing auroral forms are the results of disturbances known as ‘substorms’ taking place in Earth’s magnetosphere.

These perturbations can affect our daily lives, in particular by affecting the reception of GPS signals. Thus, understanding the physical processes involved is important to our routine life and security.
[+/-] Click here to expand

These substorms typically last one to two hours and are three-dimensional physical phenomena spread over altitudes from 100 to 150 000 kilometres.

Currently, there are two competing theoretical models to describe these substorms or space tsunamis. The first one is called the ‘Current-Disruption’ model, while the second one is the ‘Near Earth Neutral Line Model’. Using data from the four Cluster spacecraft, a group of scientists from both sides of the Atlantic were able to confirm that the behaviour of some substorms is consistent with the Current Disruption model.

In the late stage of substorm development, auroral disturbances move towards the poles, suggesting that the energy source for auroras and substorms moves away from Earth.

Previous satellite observations have found that, during this late stage, the flows of plasma (a gas of charged particles populating Earth’s magnetosphere) in the magnetotail exhibit a reversal in direction. In recent years it was generally thought that a flow reversal region is where magnetic reconnection takes place, that is where the energy of the magnetic field is converted into particle energy (dissipation effect), resulting in high-speed plasma flows that hurl towards Earth, like space tsunamis.

By comparing the directions of the electric current and the electric field in the magnetosphere it is possible to understand whether the cause of the flow reversal is a dissipation effect (where magnetic field energy converted to particle energy) or a dynamo effect (where particle energy is converted to magnetic field energy). For this case study, the Cluster scientists observed that features associated with flow reversal are actually very complex, consisting of both dissipation and dynamo effects in localised sites.

Read more: Cluster sees tsunamis in space from ESA


Labels: , ,