Spiral Galaxy NGC1232 Credit: ESO.
This image of the large spiral galaxy NGC 1232 was obtained with the Very Large Telescope (VLT). Its distance from Earth is about 100 million light-years. It is thought to contain more dark matter than visible matter.
The same
University of Alabama (UAH) group that in 2002 found what was theorized to be a significant fraction of the "missing mass" that binds together the universe has discovered that some x-rays thought to come from intergalactic clouds of "warm" gas are instead probably caused by lightweight electrons.
If the source of so much x-ray energy is tiny electrons instead of hefty atoms, it is as if billions of lights thought to come from billions of aircraft carriers were found instead to come from billions of extremely bright fireflies.
"This means the mass of these x-ray emitting clouds is much less than we initially thought it was," said Dr. Max Bonamente, an assistant professor in UAH's Physics Department. "A significant portion of what we thought was missing mass turns out to be these 'relativistic' electrons."
Travelling at almost the speed of light (and therefore "relativistic"), these feather weight electrons collide with photons from the cosmic microwave background. Energy from the collisions converts the photons from low-energy microwaves to high-energy x-rays.
In 2002 the UAH team reported finding large amounts of extra "soft" (relatively low-energy) x-rays coming from the vast space in the middle of galaxy clusters. This was in addition to previously-discovered "hot" gas in that space, which emits higher energy "hard" x-rays.
Although the soft x-ray-emitting atoms were thought to be spread thinly through space (less than one atom per cubit meter), they would have filled billions of billions of cubic light years. Their cumulative mass was though to account for as much as ten percent of the mass and gravity needed to hold together galaxies, galaxy clusters and perhaps the universe itself.
When Bonamente and his associates looked at data gathered by several satellite instruments, including the Chandra X-ray Observatory, from a galaxy cluster in the southern sky, however, they found that energy from those additional soft x-rays doesn't look like it should.
"We have never been able to detect spectral emission lines associated with those detections," he explained. "If this 'bump' in the data were due to cooler gas, it would have emission lines."
The best, most logical explanation seems to be that a large fraction of the energy comes from electrons smashing into photons instead of from warm atoms and ions, which would have recognizable spectral emission lines. Finding these electrons, however, is like finding "the tip of the iceberg," said Bonamente, because they would not be limited to emitting only the soft x-ray signal. The signal from these electrons would also make up part of the previously observed harder X-rays, which would reduce the amount of mass thought to make up the hot gas at the center of galaxy clusters.
The energy from these electrons might also "puff up" the cluster. Previously, astrophysicists used the energy coming from inside these clusters to calculate how much mass is needed to reach the equilibrium seen there; too much mass and the cloud would collapse; too little and the hot gas cloud would expand. Since the energy coming from these hot clouds can be accurately measured, it was thought the mass could be calculated with reasonable confidence.
Instead, says Bonamente, if a significant portion of the total x-ray energy comes from fast electrons, "that could trick us into thinking there is more gas than is actually there." It means we need to revise how we calculate both the gas mass and the total mass. If part of the hard x-ray energy comes from electrons and photons, it might also shift what we think is the mix of elements in the universe.
Outside of the excess soft x-rays, the x-ray energy coming from galaxy clusters has emission lines which are especially prominent around iron and other metals. Non-thermal x-rays from electrons colliding with photons might mask those emission lines, like thick snow can mask the height of fence posts. "This is also telling us there is fractionally more iron and other metals than we previously thought," said Bonamente. "Less mass but more metals."
__________________________________________________________
__________________________________________________________
Missing Mass Theory Revised from Centauri Dreams
Big Chunk Of The Universe Is Missing - Again from Science Daily
Dark Matter & visible Matter in Galaxies from Life in the Universe
__________________________________________________________
__________________________________________________________
Labels: Astro Physics, Galaxies, Mass, Theoretical Physics
Cosmic rays are protons and atomic nuclei that travel across the universe at close to the speed of light. When these particles smash into the upper atmosphere of our planet, they create a cascade of secondary particles called an air shower that can spread across 40 or more square kilometres as they reach the Earth’s surface.
Professor Subir Sarkar of the Physics Department at Oxford University, a member of the Auger Collaboration, said: ‘The Auger data indicates that the sources of ultrahigh energy cosmic rays are associated with nearby 'active galaxies' which harbour supermassive black holes that are gobbling up stellar matter and ejecting huge jets of plasma. Our own galaxy too has such a black hole at its centre but, fortunately for us, it is not 'feeding' at the moment!’
The Pierre Auger Observatory records cosmic ray showers through an array of 1,600 particle detectors placed 1.5 kms apart in a grid spread across 3,000 square kms. Twenty-four specially designed telescopes record the emission of fluorescence light from the air shower. The combination of particle detectors and fluorescence telescopes provides an exceptionally powerful instrument for this research.
While the observatory has recorded almost a million cosmic-ray showers, only the rare, highest-energy cosmic rays can be linked to their sources with sufficient precision. Auger scientists so far have recorded 81 cosmic rays with energy above 4 x1019 electron volts, or 40 EeV. This is the largest number of cosmic rays with energy above 40 EeV recorded by any observatory.
At these ultra-high energies, the uncertainty in the direction from which the cosmic ray arrived is only a few degrees, allowing scientists to determine the location of the particle’s cosmic source.
The Auger collaboration discovered that the 27 highest-energy events, with energy above 57 EeV, do not come equally from all directions. Comparing the clustering of these events with the known locations of 381 Active Galactic Nuclei, the collaboration found that most of these events correlated well with the locations of AGNs in some nearby galaxies, such as Centaurus A.
Click Image to Enlarge: Centaurus A
Low-energy cosmic rays are abundant and come from all directions, mostly from within our own Milky Way galaxy. Until now the only source of cosmic ray particles known with certainty has been the sun. Cosmic rays from other likely sources such as exploding stars take meandering paths through space so that when they reach Earth it is impossible to determine their origins.
"But when you look at the highest-energy cosmic rays from the most violent sources, they point back to their sources. The challenge now is to record enough of these cosmic bullets to understand the processes that hurl them into space," said Paul Mantsch, project manager of the Pierre Auger Observatory.
Cosmic rays with energy higher than about 60 EeV lose energy in collisions with the cosmic microwave background, (radiation left over from the Big Bang that fills all of space). But cosmic rays from nearby sources are less likely to lose energy in collisions on their relatively short trip to Earth. Auger scientists found that most of the 27 events with energy above 57 EeV came from locations in the sky that include the nearest AGNs, within a few hundred million light years of Earth.
Scientists think that most galaxies have black holes at their centres, with masses ranging from a million to a few billion times the mass of our sun. The black hole at the centre of our Milky Way galaxy weighs about 3 million solar masses, but it is not an AGN. Galaxies that have an AGN seem to be those that suffered a collision with another galaxy or some other massive disruption in the last few hundred million years. The AGN swallows the mass coming its way while releasing prodigious amounts of radiation. The Auger result indicates that AGNs may also produce the universe's highest-energy particles.
Cosmic-ray astronomy is challenging, because low-energy cosmic rays provide no reliable information on the location of their sources: as they travel across the cosmos, they are deflected by galactic and intergalactic magnetic fields that lead to blurry images. In contrast, the most energetic particles come almost straight from their sources, as they are barely affected by the magnetic fields. Unfortunately, they hit Earth at a rate of only about one event per square kilometre per century, which demands a very large observatory.
Because of its size, the Auger Observatory can record about 30 ultra-high-energy events per year. The Auger collaboration is developing plans for a second, larger installation in Colorado to extend coverage to the entire sky while substantially increasing the number of high-energy events recorded.
"Our current results show the promising future of cosmic-ray astronomy," said Auger co-spokesperson Giorgio Matthiae, of the University of Rome. "So far we have installed 1400 of the 1600 particle detectors of the Auger Observatory in Argentina. A northern site would let us look at more galaxies and black holes, increasing the sensitivity of our observatory. There are even more nearby AGNs in the northern sky than in the southern sky."
Source: Auger Observatory closes in on long standing mystery, links highest-energy cosmic rays with violent black holes